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Abstract — This paper studies how the accuracy of

the step detection algorithm of a pedestrian dead-
reckoning (PDR) system is affected by the sampling
frequency and the filtering of the data gathered from
a wrist-worn inertial measurement unit (IMU). On
the one hand, results show that sensors sampling
rate can be reduced and a similar accuracy can still
be obtained, what it is very interesting for energy
saving purposes. However, a low sampling frequency
requires a finer tuning of the algorithm’s parame-
ters. On the other hand, the application of a filter
to the data gathered from the sensors is always rec-
ommended, in order to get some performance im-
provement. Different types of filters can be used in
function of the value of the sampling frequency.

1 INTRODUCTION

Context-aware systems and applications usually ob-
tain the user’s position from Global Navigation
Satellite Systems (GNSS), as the GPS. However,
these technologies perform poorly in environments
in which GNSS signals get severely degraded, or
even blocked, due to multipath and attenuation
losses [1], such as in "urban canyons” or inside
buildings, places in which people spend the most
part of the day.

Dead-Reckoning is a positioning technique based
on updating a known initial position using the es-
timated speed and heading over time. Its adap-
tation to the characteristics of people’s walking
is often called pedestrian dead-reckoning (PDR).
Thanks to the MEMS technology (Microelectrome-
chanical systems), it is possible to build small and
cheap sensors, called inertial measurement units
(IMU), that contain several accelerometers, gyro-
scopes and, sometimes, magnetometers [2], and
place them on people in order to detect their move-
ments and implement the PDR technique. A re-
markable advantage of this option is that no addi-
tional infrastructure is needed to be installed, so it
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is being considered as a promising solution for ob-
taining seamless positioning of pedestrians in sce-
narios where GNSS systems may get degraded.

There are two ways to implement the PDR tech-
nique [3]: applying a strapdown inertial naviga-
tion system (INS) mechanization [4] in which po-
sition is obtained by integrating accelerometer and
gyroscope readings; or integrating the user’s step
lengths and heading angles at each detected step.
For the first implementation, good results are ob-
tained with foot-mounted IMU thanks to the possi-
bility of introducing Zero-Velocity-Update (ZUPT)
pseudo-measurements, what reduces the error drift
of the inertial sensors [5]. However, this location of
the sensor can be uncomfortable for the user. Using
the second implementation, it has been studied to
take advantage of the IMUs that all current smart-
phones already include. However, this option be-
comes complex to process due to the unconstrained
location and orientation of the phone with respect
to the user [6]. A wrist-worn IMU offers a trade-off:
a fixed location on the body but more convenient
for the user than the foot-mounted IMU. Moreover,
the recent availability of smartwatches and smart-
bands opens up an opportunity to research this op-
tion.

The literature about PDR-based systems usu-
ally focuses on describing the detection and esti-
mation algorithms, providing few details about how
the configuration of the sensors affect their perfor-
mance. In this paper, the authors pay special atten-
tion to how a wrist-worn IMU’s sampling frequency
and the filtering of its signals affect the accuracy of
the step detection algorithm of a PDR positioning
system. The objective of this study is to under-
stand better how the step detection algorithm re-
ally works, in order to maximize its performance.

The structure of the paper is as follows: Section
2 describes related works in the field. Methodology
and experimental results are described in section 3
and 4. Finally, conclusions are drawn in section 5.

2 RELATED WORK

There already exists a lot of sport watches that
compute the travelled distance by counting steps



and assuming a fixed step length. This can be
enough to monitor sport activity but not for ac-
curate positioning. To the best knowledge of the
authors, only two papers try to perform position
estimation from wrist-worn IMU.

In [7] they only described the PDR’s step length
estimation model, proposing a non-linear 2" order
polynomial model that uses either fixed parameters
or estimated parameters obtained by fusing GPS
measures in a Kalman filter.

In [8] they described a complete PDR system:
their step detection algorithm is based on the cross-
ings of the acceleration magnitude over a dynam-
ically updated threshold, plus some validations on
temporal durations, magnitude peaks and signal
periodicity; for the step length estimation, they
proposed a linear polynomial model of the step fre-
quency and acceleration variance; and for the head-
ing estimation, they took advantage of the peri-
odicity of the acceleration during walking to make
the assumption that the offset between the IMU
heading and the pedestrian will always be constant
whenever the magnitude of the acceleration crosses
the gravity. They worked with a 100 Hz sampling
frequency and a low-pass filter was applied only for
the heading estimation, no for the step detection.

3 METHODOLOGY

Firstly, the step detection algorithm described in [8]
was implemented and, subsequently, the method-
ology followed in this paper consisted in process-
ing several datasets, obtained from real walks, and
checking the variations of the step detection al-
gorithm’s accuracy when the data’s sampling fre-
quency is modified and a filter is applied. Addition-
ally, as the values of the algorithm’s parameters are
not mentioned in [8], different ranges of them were
used with the objective of finding the best possible
configuration.

3.1 Data collection

Figure 1 corresponds to the system used to collect
real data. It was described in [9] and it is based
on the 9DOF Razor IMU, provided by SparkFun
Electronics.

Data collection was performed by an only sub-
ject, wearing the aforementioned IMU on his left
wrist and a smartphone for data registering.

The subject took straight-line walks of 30 steps
at different paces, covering the usual range of walk-
ing step frequency: from 1.5 Hz to 2.1 Hz, with
increments of 0.1 Hz. A metronome was used as a
pace reference to the subject.

LiPo USB Charger
9DOF Razor IMU
BlueSMiRF Gold
LiPo battery

Enclosure

Velcro straps

Figure 1: Low-cost Bluetooth IMU.

For every different step frequency, 5 walks were
taken. Therefore, 35 different registered walks were
available to be processed.

3.2 Step detection algorithm parametriza-
tion

As mentioned before, no recommended values were
indicated in [8] for the algorithm’s parameters. Ta-
ble 1 collects the ranges of empirically obtained val-
ues that were considered in this study.

Parameter Range of Values

Min step duration [0.255,0.333 5

Max step duration [0.8335,1.667 s

Min peak-to-threshold [0.5m/s%1.5m/s>

Max peak-to-threshold [12m/s%,16 m/s?

Sliding window size 55,65,6.55,7s

Autocorrelation threshold 0.8

Table 1: Step detection algorithm’s parametrization.

3.3 Sampling frequency and filtering

As the datasets were collected with the IMU’s sam-
pling frequency set to 100 Hz, in order to obtain
different sampling rates, downsampling was applied
on the collected data. Ignoring the right samples,
the following sampling rates were obtained: 100 Hz,
50 Hz, 25 Hz, 20 Hz, 10 Hz and 5 Hz.

Regarding the signal filtering, these are the dif-
ferent filters that were tested:

e Moving median filters of order 3 and 5.

e Moving average filters using a lag of 3 and 5
samples.
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Figure 2: Error distribution for each tested combina-
tion, grouped by sampling frequency.

e Low-pass Butterworth filters of 37¢, 5th, 7t
and 9*" order and cutoff frequencies between
5.5 Hz and 7 Hz.

3.4 Step detection performance

In order to study the variation of the step detection
algorithm’s accuracy, the complete set of datasets
was processed by each different possible combina-
tion of the previously defined values of sampling
frequency, signal filtering types and values of the
algorithm’S parameters.

The normalized root-mean-square error (RMSE)
was used as an error metric to compare the perfor-
mance achieved by each combination, being the er-
ror defined as the difference between the estimated
and the actual step count.

4 RESULTS AND DISCUSSION

In order to represent the aggregated data from the
test run, box-and-whisker diagrams are used. In
this kind of diagrams, the bottom and top of the
boxes are the first and third quartiles, the circles
with a dot inside the box represent the medians,
and the “whiskers” are the minimum and maxi-
mum of all data, considering as outliers (drawn as
crosses) the points that are larger than Q3 + 1.5
(@3 — Q1) or smaller than Q1 — 1.5 % (Q3 — Q1),
where Q1 and Q3 are the first and third quartiles,
respectively.

4.1 Effects of the sampling frequency

The distributions of the errors obtained for each
tested combination, grouped by sampling fre-
quency, are represented in Figure 2.

For the 5 Hz sampling frequency, the mini-
mum RMSE obtained (16.20%) is much larger
than for the rest of sampling rates (lower than
4.23%). Since the normal pedestrian step fre-
quency is around 2 Hz, the 5 Hz sampling rate is
close to the Nyquist frequency and problems of sig-
nal aliasing are likely to arise.

For the rest of sampling frequencies, although
their minimum RMSE’s are similar, taking a look
at how the errors are distributed it can be seen
that, on one hand, lower sampling frequencies are
more dependent on the selection of the values of
the algorithm’s parameters. In fact, the 75% of the
tested combinations for 10 Hz and 20 Hz sampling
frequencies and the 50% for 25 Hz are completely
useless (i.e., 100% RMSE). On the other hand, 50
Hz and 100 Hz sampling rates offer almost equiva-
lent performances.

Therefore, a good algorithm’s parameters tun-
ing allows a reduction of the sensors sampling fre-
quency, what leads to a power saving. However,
if a very low sampling frequency is selected, a lit-
tle drift from the optimal tuning will produce big
erTors.

4.2 Effects of the filtering

Figure 3 shows the distribution of the errors ob-
tained for each type of filter, grouped by three dif-
ferent sampling frequencies.

As it can be seen, the application of a filter to the
sensors data improves the performance achieved by
the step detection algorithm in all the cases. The
best results are obtained applying a 9th order low-
pass Butterworth filter, with a cutoff frequency of
6Hz, but its usage is very dependent on the sam-
pling frequency: for the lowest frequency, 25 Hz,
the performance is much worse.

Therefore, the appliance of a smoothing filter,
as a moving median or moving average, is always
recommended. However, for high sampling rates, a
frequency domain filter, as a low-pass Butterworth
filter, can get better results.

5 CONCLUSIONS

Literature about PDR-based systems usually fo-
cuses on describing the detection and estimation al-
gorithms, providing few details about how the con-
figuration of the sensors affects their performances.
This work has studied the effects of sensors’s sam-
pling frequency and the filtering of their output sig-
nals on the accuracy of the step detection algorithm
of a wrist-worn IMU based PDR system.

Results have shown that using sampling frequen-
cies larger than a certain threshold (5 Hz in the
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Figure 3: Error distribution for each tested combination, grouped by filtering method.

case studied), similar error rates can be obtained.
This is important for implementing PDR systems in
battery-supported devices, since reducing the sen-
sors sampling rate implies reducing the power con-
sumption. However, the usage of low sampling fre-
quencies requires a finer tuning of the algorithm’s
parameters. Otherwise, performance gets dramati-
cally worse.

It has also been seen that the application of fil-
ters to the IMU’s signals is always recommended
because the accuracy is slightly improved. Both
smoothing and frequency selective filters can be
used, being the latter ones which better accuracy
offer for high sampling frequencies.

In the future, this study will be extended to the
other two main blocks of a PDR system, the step
length and heading estimation, in order to balance
the rate accuracy/consumption of the whole posi-
tioning system.
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